首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3233篇
  免费   89篇
  国内免费   49篇
化学   2001篇
晶体学   21篇
力学   345篇
数学   146篇
物理学   858篇
  2024年   1篇
  2023年   215篇
  2022年   59篇
  2021年   58篇
  2020年   215篇
  2019年   78篇
  2018年   77篇
  2017年   220篇
  2016年   193篇
  2015年   164篇
  2014年   174篇
  2013年   129篇
  2012年   157篇
  2011年   74篇
  2010年   105篇
  2009年   112篇
  2008年   68篇
  2007年   114篇
  2006年   187篇
  2005年   110篇
  2004年   58篇
  2003年   98篇
  2002年   111篇
  2001年   166篇
  2000年   69篇
  1999年   161篇
  1998年   96篇
  1997年   67篇
  1996年   31篇
  1995年   3篇
  1991年   1篇
排序方式: 共有3371条查询结果,搜索用时 31 毫秒
1.
The accumulation of material degradation under contact with aggressive aqueous environments could lead to reduced structural reliability. In terms of hydrated cementitious materials, such interactions often result in the chemo-physical-mechanical (CPM) degradation, which represents a multiphysics process of high non-linearity and complexity. By further considering the inevitable uncertainties associated with both the materials and the serving conditions, solving such a process requires novel probabilistic approaches. This paper presents a stochastic chemo-physical-mechanical (SCPM) degradation analysis on the hydrated cement under acidic environment. The SCPM analysis consists of modelling the stochastic chemophysical degradation by finite element method, and assessing the mechanical deterioration through analytical micromechanics. The proposed modelling framework couples the conventional Monte Carlo Simulation with a novel support vector regression algorithm. The present method is able to not only address the detailed degradation mechanisms, but also ensure low computational costs for an accurate SCPM degradation assessment.  相似文献   
2.
李悦  王博  朱晓丽  刘昆 《人工晶体学报》2021,50(11):2156-2163
通常采用以氢氧化物作为造孔剂,过渡金属硝酸盐或氯化物作为石墨化催化剂的传统两步法策略制备多孔石墨化碳材料。然而制备过程中多涉及有毒和腐蚀性试剂,且多步骤的过程耗时较长。本文以双氰胺为原料通过热缩聚反应得到g-C3N4,采用高铁酸钾为催化剂一步法实现g-C3N4的同步碳化-石墨化,并研究其光催化性能。与传统的两步法相比,该方法耗时少、效率高、无污染。与初始的g-C3N4材料相比,石墨化g-C3N4衍生碳质材料不仅显著改善了可见光的吸收,而且大大增强了光催化活性。研究了不同石墨化温度对g-C3N4衍生碳质材料在可见光下降解甲基橙溶液的影响。700 ℃下制备的衍生碳质材料的降解率为12.4 mg/g。光电化学测试结果表明,多孔g-C3N4衍生碳质材料的光生载流子密度、电荷分离和光电流(提高了5.4倍)均得到显著提高。因此,该简便、灵活方法为提高g-C3N4衍生碳质材料的吸附和光催化性能提供了一种有前景的、高效的途径。  相似文献   
3.
Journal of Thermal Analysis and Calorimetry - A phosphazene-based flame retardant (PBFA) was synthesized by hexachlorocyclotriphosphazene and N-aminoethylpiperazine. To improve the flame retardancy...  相似文献   
4.
《中国化学快报》2020,31(12):3183-3189
Engineered nanomaterials have attracted significantly attention as one of the most promising antimicrobial agents for against multidrug resistant infections. The toxicological responses of nanomaterials are closely related to their physicochemical properties, and establishment of a structure-activity relationship for nanomaterials at the nano-bio interface is of great significance for deep understanding antibacterial toxicity mechanisms of nanomaterials and designing safer antibacterial nanomaterials. In this study, the antibacterial behaviors of well-defined crystallographic facets of a series of Au nanocrystals, including {100}-facet cubes, {110}-facet rhombic dodecahedra, {111}-facet octahedra, {221}-facet trisoctahedra and {720}-facet concave cubes, was investigated, using the model bacteria Staphylococcus aureus. We find that Au nanocrystals display substantial facet-dependent antibacterial activities. The low-index facets of cubes, octahedra, and rhombic dodecahedra show considerable antibacterial activity, whereas the high-index facets of trisoctahedra and concave cubes remained inert under biological conditions. This result is in stark contrast to the previous paradigm that the high-index facets were considered to have higher bioactivity as compared with low-index facets. The antibacterial mechanism studies have shown that the facet-dependent antibacterial behaviors of Au nanocrystals are mainly caused by differential bacterial membrane damage as well as inhibition of cellular enzymatic activity and energy metabolism. The faceted Au nanocrystals are unique in that they do not induce generation of reactive oxygen species, as validated for most antibiotics and antimicrobial nanostructures. Our findings may provide a deeper understanding of facet-dependent toxicological responses and suggest the complexities of the nanomaterial-cell interactions, shedding some light on the development of high performance Au nanomaterials-based antibacterial therapeutics.  相似文献   
5.
Some principal features of the behavior of materials subjected to pulsed actions are common for a number of seemingly quite different physical processes, such as dynamic fracture (starting cracks and scabbing), cavitation in liquids, and electrical breakdown in solids. In this paper, we analyze examples illustrating typical dynamic effects inherent in these processes. We propose a unified interpretation for the fracture of solids and liquids and electrical breakdown in insulators using the structural-time approach based on the concept of the fracture incubation time. The examples of different physical processes considered in the paper show the fundamental importance of investigating incubation processes preparing abrupt structural changes (fracture and phase transitions) in continua under intense pulsed actions. The fracture incubation time is evidently a universal basic characteristic of the dynamic strength and must become one of the main material parameters to be experimentally determined (measured).  相似文献   
6.
A finite-deformation theory is developed to study the mechanics of thin buckled films on compliant substrates. Perturbation analysis is performed for this highly nonlinear system to obtain the analytical solution. The results agree well with experiments and finite element analysis in wavelength and amplitude. In particular, it is found that the wavelength depends on the strain. Based on the accurate wavelength and amplitude, the membrane and peak strains in thin films, and stretchability and compressibility of the system are also obtained analytically.  相似文献   
7.
《Journal of Electrostatics》2006,64(3-4):176-186
An efficient method is proposed for the computation of the electric field strength and of the space-charge density in configurations of at least three ionising and non-ionising electrodes. The physical model is derived under the assumptions commonly accepted for the study of corona fields. The mathematical model makes use of a conformal mapping that converts the actual boundary-free field zone into a rectangular domain with well-defined boundary conditions. The finite-difference method is then used for solving the differential equations that describe the ionic space-charge and electric field distribution. The computational procedure was employed for studying the simple case of the drift zone of the corona discharge generated between a so-called dual electrode and a grounded plate. The dual electrode consisted of an ionising wire (diameter 0.22 mm) located at 20 mm from a tubular metallic support (diameter 25 mm). The computed current–voltage characteristic and current density distribution at the surface of the collector plate were in good agreement with the experimental data obtained for this combined corona–electrostatics electrode arrangement.  相似文献   
8.
9.
The morphologies and lattice structures of anthracene single crystals grown from the vapor phase were investigated using optical microscopy, phase contrast microscopy, atomic force microscopy (AFM), and X-ray diffraction analysis. Common morphologies with hexagonal large planes were observed irrespective of crystal size. The observation of certain surface morphologies with a phase contrast microscopy revealed that the spiral steps originated from screw dislocations present on the (0 0 1) planes. Moreover, the center and edge of the (0 0 1) planes had large curvatures, similar to hills. Resultantly, quarter-monolayer (ML) steps were observed on the large and flat planes between both hills.  相似文献   
10.
The surface-modified iron nanoparticles (S-INP) were synthesized, characterized and tested for the remediation of arsenite (As(III)), a well known toxic groundwater contaminant of concern. The S-INP material was fully dispersed in the aqueous phase with a particle size distribution of 2–10 nm estimated from high-resolution transmission electron microscopy (HR-TEM). X-ray photoelectron spectroscopy (XPS) revealed that an Fe(III) oxide surface film was present on S-INP in addition to the bulk zero-valent Fe0 oxidation state. Transport of S-INP through porous media packed in 10 cm length column showed particle breakthroughs of 22.1, 47.4 and 60 pore volumes in glass beads, unbaked sand, and baked sand, respectively. Un-modified INP was immobile and aggregated on porous media surfaces in the column inlet area. Results using S-INP pretreated 10 cm sand-packed columns containing ∼2 g of S-INP showed that 100 % of As(III) was removed from influent solutions (flow rate 1.8 mL min−1) containing 0.2, 0.5 and 1.0 mg L−1 As(III) for 9, 7 and 4 days providing 23.3, 20.7 and 10.4 L of arsenic free water, respectively. In addition, it was found that 100% of As(III) in 0.5 mg/L solution (flow rate 1.8 mL min−1) was removed by S-INP pretreated 50 cm sand packed column containing 12 g of S-INP for more than 2.5 months providing 194.4 L of arsenic free water. Field emission scanning electron microscopy (FE-SEM) showed S-INP had transformed to elongated, rod-like shaped corrosion product particles after reaction with As(III) in the presence of sand. These results suggest that S-INP has great potential to be used as a mobile, injectable reactive material for in-situ sandy groundwater aquifer treatment of As(III).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号